If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2-4(25)(9)=0
a = 1; b = 0; c = -4259;
Δ = b2-4ac
Δ = 02-4·1·(-4259)
Δ = 17036
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{17036}=\sqrt{4*4259}=\sqrt{4}*\sqrt{4259}=2\sqrt{4259}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{4259}}{2*1}=\frac{0-2\sqrt{4259}}{2} =-\frac{2\sqrt{4259}}{2} =-\sqrt{4259} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{4259}}{2*1}=\frac{0+2\sqrt{4259}}{2} =\frac{2\sqrt{4259}}{2} =\sqrt{4259} $
| 2(3w+5)=10 | | 3,500=(210+3d) | | 5x+3x-17x=-5 | | 4r–2=2r+7 | | 2x+4/3=84 | | x+6=(x+2) | | 3x+6=5(3+4) | | 4/11+s=9/11 | | 3(q-13)-6=12 | | x+53=+90=180 | | 3,500=(210p+3) | | (-x)/4(-x)-(-4)=-8 | | 3(x+5)-6=3 | | 6a-17=13 | | 4/5(10+2x)=11-2x | | 8s.5=120 | | 2g+4=19 | | 3(q−13)−6=12 | | 2(3x+9)=-30+42 | | -8x-5+3x=7+4×-9 | | 8/18=v/21 | | 4*6y+5-2=14 | | 4x-19=127 | | 48h-18=174 | | 80(21/2)*0.25=n | | -12y=40 | | 14/2×(2x-1)=1 | | 8(5n-7)+5=31-n | | 4|6y-5|-2=14 | | 14x=7x10 | | 3x+(-6x)=38 | | 115=(9x+7) |